🧠 Model

layoutlmv3-base

by microsoft

--- language: en license: cc-by-nc-sa-4.0 --- Microsoft Document AI | GitHub LayoutLMv3 is a pre-trained multimodal Transformer for Document AI with unified text and image masking. The simple unified architecture and training objectives make LayoutLMv3 a general-purpose pre-trained model. For exampl...

πŸ• Updated 12/18/2025

🧠 Architecture Explorer

Neural network architecture

1 Input Layer
2 Hidden Layers
3 Attention
4 Output Layer

About

Microsoft Document AI | GitHub LayoutLMv3 is a pre-trained multimodal Transformer for Document AI with unified text and image masking. The simple unified architecture and training objectives make LayoutLMv3 a general-purpose pre-trained model. For example, LayoutLMv3 can be fine-tuned for both text-centric tasks, including form understanding, receipt understanding, and document visual question answering, and image-centric tasks such as document im...

πŸ“ Limitations & Considerations

  • β€’ Benchmark scores may vary based on evaluation methodology and hardware configuration.
  • β€’ VRAM requirements are estimates; actual usage depends on quantization and batch size.
  • β€’ FNI scores are relative rankings and may change as new models are added.
  • β€’ Data source: [{"source_platform":"huggingface","source_url":"https://huggingface.co/microsoft/layoutlmv3-base","fetched_at":"2025-12-18T04:21:59.014Z","adapter_version":"3.2.0"}]

πŸ“š Related Resources

πŸ“„ Related Papers

No related papers linked yet. Check the model's official documentation for research papers.

πŸ“Š Training Datasets

Training data information not available. Refer to the original model card for details.

πŸ”— Related Models

Data unavailable

πŸš€ What's Next?